Lean domain pools for fractal image
compression'

Dietmar Saupe

Universitat Freiburg
Institut fur Informatik

Am Flughafen 17, 79110 Freiburg, Germany

IThis paper is from the Conference Proceedings of SPIE Electronic Imaging’96, Science
and Technology, Still Image Compression I, San Jose, January 1996, Volume 2669.

Abstract

In fractal image compression an image is partitioned into ranges for each of which
a similar subimage, called domain, is selected from a pool of subimages. A typical
choice for the domain pool may consist of all square subimages of a particular size.
However, only a fraction of this large pool is actually used in the fractal code. This
subset can be characterized in two related ways: (1) It contains domains with rela-
tively large intensity variation. (2) The collection of used domains are localized in
those image regions with a high degree of structure. Both observations lead us to im-
provements of fractal image compression. Firstly, we accelerate the encoding process
by a priori discarding those domains from the pool which are unlikely to be chosen for
the fractal code. This comes at the expense of a slight loss in compression ratio. In
our empirical studies (using Fisher’s adaptive quadtree method) we have found that
a twofold acceleration leads to a drop of only 2 to 3% in the compression ratio while
the image quality even improves by 0.1 to 0.2 dB. Secondly, the localization of the
domains can be exploited for an improved encoding in effect raising the compression
ratio back up without any penalty.

Keywords: image compression, fractals, domain pool, block variances

1 INTRODUCTION

Fractal image compression [1, 4, 7] is capable of yielding competitive rate-distortion
curves, however, it suffers from long encoding times. Therefore, large efforts have
been undertaken to speed up the encoding process. Most of the proposed techniques
attempt to accelerate the searching and are based on some kind of feature vector
assigned to ranges and domains. The features can be discrete (leading to classifica-
tion and clustering methods) or continuous (yielding functional or nearest neighbor
methods).[13, 14| When applied, these methods provide greater speed which is traded
in for a loss in image fidelity and compression ratio.

A different route to increased speed can be chosen by less searching as opposed
to faster searching. This means that if we can devise a technique to estimate a priori
whether a given domain will be used for the fractal code or not, then we can exclude
all unlikely domains. In this way greater speed is achieved by restricting the search to
a reduced domain pool. Of course, the search in the reduced domain pool may then
be supported by a method of the other kind, e.g., by classification. Several possible
approaches have been reported in the literature.

e One may argue that those domains that are close to a given range in the image
(e.g., domains that overlap the range) are especially well suited as a partner for
the given range, thereby localizing the domain pool relative to the range (see,
e.g., the work of Monro and Dudbridge [10, 11| and Barthel et al [2]). This is
an adaptive domain pool reduction; for each range a different domain pool is
constructed.

e Another adaptive variant has been suggested in a functional method by Bedford,
Dekking, and Keane [3, 13]. Depending on the range the domain pool is shrunk
by excluding a number of domains that do not satisfy a condition which involves
certain inner products which are independent of the range and can be calculated
for all domains in a preprocessing step. These excluded domains are guaranteed
not to be optimal for the given range; thus, no image or compression degradation
can occur with this method.

e Complementing these methods one can work with a fixed domain pool, which
is initially scanned once in order to discard domains that are unlikely to be of
any use.

In principle, this last approach has already been implemented in the early work of
Jacquin [7]. He used a classification scheme coming from a study of Ramamurthi and
Gersho [12] which classifies domain blocks according to their perceptual geometric
features. Three major types of blocks are differentiated: shade blocks, edge blocks,
and midrange blocks. In shade blocks the image intensity varies only very little. Since
ranges that would be classified as shade blocks can be approximated well by a scaled
constant fixed block, it is not necessary to search for a corresponding domain. Thus,
in this scheme all domains classified as shade blocks are never used and effectively are
excluded from the domain pool. However, in Jacquin’s approach the class of shade

blocks cannot be very large. For example, only 11% of all blocks for the 256 x 256, 6
bit/pixel Lenna have been classified as shade blocks in Jacquin’s work [6]. The reason
for this is that otherwise too many range blocks would be classified as shade blocks
and thus be coded as a constant fixed block yielding poor approximations. Therefore,
no variations of shade block definitions have been investigated in these studies.

In this article we consider a parametrized and non-adaptive version of domain pool
reduction. Here we allow an adjustable number of domains to be excluded (ranging
from 0% to almost 100%) and investigate the effects on computation time, image
fidelity and compression ratio.

We will see that there is no need for keeping domains with low intensity variance
in the pool. Thus, we propose to eliminate a fraction 1 — «, « € (0, 1] of the domain
pool consisting of the domains with least variance. In this way we remove the mostly
useless domains from the pool achieving a lean and more productive domain pool.
Using the adaptive quadtree method of Fisher [4, Appendix A] we will show the
following:

1. The computation time scales linearly with a.

2. Even for low values of a, e.g.., a = 0.15, there is no degradation in image quality.
On the contrary, the fidelity improves slightly.

3. For medium values of a, e.g., a = 0.50, the compression ratio suffers a little,
decreasing by about 2%.

The fractal code for an image essentially consists of the partitioning of the image
into ranges and the data for one affine transformation per range. These data are
given by an offset o (typically 7 bits), a scaling factor s (5 bits), a domain Dy from
the domain pool and the code for an isometry (3 bits). The intensity values in the
coded range are then taken from the scaled, transformed copy of the domain plus
the added offset. The domains from the pool are indexed and referenced by that
index. Let us discuss the simple example of a grey scale image of resolution 512 x
512 with a domain pool of non-overlapping domains of size 8 x 8. Thus, there are
642 = 4096 = 2'? domains in this pool altogether and the storage of one domain
index costs 12 bits. It turns out that only a certain fraction, e.g., say 1000, of these
domains are used. We propose to make use of this observation in the following way.
We use a standard ”white block skipping” quadtree storage scheme to identify the
1000 domains used out of the total of 4096. With the quadtree on hand we can
now code indices of domains in the range from 1 to 1000, costing only 10 bits each.
Thus, we save 2 bits per transformation. If M is the total number of ranges we have
an overall file size reduction if the code for the quadtree does not exceed 2M bits.
This approach will become beneficial in combination with lean domain pools since
the collection of domains used will have even more structure yielding a smaller code
for the domain quadtree.

Parallel to this work researchers are currently investigating other methods for
domain pool reduction for fractal image compression. Kominek [8, 9] and Signes [15]
propose to remove domain blocks from the domain pool if they can be covered well by

500 T T T T

All domains —
Used domains ----

400

300

200

Number of domains

100

0 ,"1’“77'7,\"’]—"’7'— fffff S it i o R B e e Rl ey B oy BV —
0 20 40 60 80 100
Variance

Figure 1: Histogram of variances in the domain pool of domain blocks of size 8 x 8
versus that for domains actually used in an adaptive quadtree fractal code of Lenna.

other blocks still in the pool. Also high variance domain blocks are generally favored
over low variance blocks; however, no analysis of the time/performance tradeoff is
attempted for this approach.

The remainder of this article is organized as follows. In Section 2 we present the
details and results of the domain pool reduction by eliminating domains with low
intensity variation. In Section 3 the optimized domain storage scheme is presented
with results.

2 ACCELERATION BY LEAN DOMAIN POOLS

In a first experiment we check our hypothesis that there is no need for keeping
domains with low intensity variance in the pool. We carry out a fractal encoding of
a test image using the adaptive quadtree method and record a histogram of intensity
variances of blocks of size 8 x 8 from the domain pool and also the corresponding
histogram for the variances of those domains actually used in the code (see Figure 1).
The result is very clear. There is a very large subset of domains in the pool with small
variances while there is no such trend in the histogram for the blocks used. Thus, we
may indeed expect that discarding a large fraction of low variance blocks will effect
only a few ranges. For these ranges a suboptimal domain with a larger variance may
be found. If, however, there is no longer a domain available in the pool which admits
a collage error within the prescribed tolerance, then the range needs to be subdivided
into four smaller ranges.

In the main study of this paper we scan each domain pool (i.e., the pools for block
sizes 8 x 8, 16 x 16, 32 x 32, and 64 x 64) and keep only a fraction «, a € (0, 1], of
them in the pool, namely those domains that have the largest variances. For differing
choices of the parameter a we compute the fractal code and record the computation
time used, the peak-signal-to-noise ratio (PSNR), and the compression ratio (see the
four left columns in Tables 1 and 2). The results are as follows:

3

Results for 512 x 512 Lenna

CPU | PSNR Compression
Q time comp. new bytes
sec dB ratio ratio saved

1.00 | 15.2 | 32.73 | 1488 14.84 =39
0.90 | 14.0 | 32.71 | 14.86 14.84 —34
0.80 | 12.6 | 32.75 | 14.85 1483 21
0.70 | 11.3 | 32.76 | 14.83 14.82 —7
0.60 | 10.1 | 32.80 | 14.75 14.77 24
0.50 8.7 | 32.87 | 14.57 14.62 60
0.40 741 3290 | 1445 14.56 137
0.30 6.0 | 32.93 | 14.19 14.88 856
0.20 4.6 | 32.88 | 13.49 14.23 1009
0.15 3.9 3278 | 13.10 13.89 1135
0.10 3.1 3253 | 12.64 1398 1982
0.08 2.8 3240 | 12.36 13.69 2070
0.06 241 32.03 | 1221 14.13 2921
0.04 2.1] 31.80 | 11.86 13.79 3101
0.02 1.7 31.03 | 11.39 13.86 4103

Table 1: Performance of the adaptive quadtree method with lean domain pools. The
parameter « indicates the fraction of domains which are kept in the pool. The time
is measured on an Indy R4600SC of Silicon Graphics in seconds. The compression
ratio is in the fourth column. When applying the optimized coding procedure for
the domains, we obtain the ratios of the fifth column with the difference in file size
measured in bytes indicated in the last column.

1. Time. Regarding the computation times there seems to be an overhead of
about 1 to 2 seconds. The remaining time scales linearly with the parameter a.
This is as expected since the major computational effort in the encoding lies in
the linear search through the domain pool.

2. Fidelity. The quality of the encoding in terms of fidelity measured by the
PSNR increases by 0.1 to 0.2 dB when lowering o (except for the Baboon
image). This is caused by the fact that some larger ranges can be covered well
for @ = 1.0 by some domains which are removed from the pool at smaller values
of a. As a consequence some of these ranges are subdivided and their quadrants
can be covered better by smaller domains than the large range previously. This
mechanism works for values of a down to about 0.15.

3. Compression. The range splitting mentioned above also increases the number
of ranges, thus, causes the compression rate to decrease slightly. For example,
this drop is 1 to 2% at a = 0.5 and 2 to 9% at a = 0.2. It is remarkable that
only relatively little loss in overall quality of the encoding is encountered for
speed up factors of 10 and higher.

CPU | PSNR Compression
Q time comp. new bytes
sec dB ratio ratio saved
Results for 512 x 512 Peppers
1.00 | 16.6 | 32.43 | 15.20 15.06 -161
0.50 | 10.0 | 32.49 | 14.93 14.95 17
0.20 5.1 1 32.55 | 14.00 14.73 921
0.10 3.3 | 3235 | 13.22 14.56 1828
0.05 2.4 3211 | 12.31 14.22 2859
Results for 512 x 512 Baboon
1.00 | 33.2 | 25.15 | 5.68 5.59 =727
0.50 | 17.3] 25.13 | 5.61 575 1148
0.20 8.0 24.81 | 555 593 3028
0.10 4.7 | 24.37 | 552 6.16 4915
0.05 3.3 | 23.87 | 550 6.42 6766
Results for 512 x 512 Boats
1.00 | 25.6 | 32.03 | 10.11 10.18 185
0.50 | 14.6 | 32.07 | 10.06 10.19 335
0.20 7.3 31.89 | 9.92 10.51 1476
0.10 4.4 | 31.53 | 9.82 10.85 2531
0.05 2.8 30.95 | 9.79 11.29 3562
Results for 512 x 512 F'16
1.00 | 21.3 | 32.86 | 12.55 12.60 75
0.50 | 12.6 | 32.97 | 12.42 12.55 211
0.20 6.2 | 32.94 | 12.05 12.75 1186
0.10 3.8 | 32.63 | 11.98 13.23 2079
0.05 241 3213 | 11.82 13.65 2967

Table 2: Results as in Table 1 for a few more test images.

3 DECREASED BITRATE BY EXPLOITING
SPATIAL DOMAIN ENTROPY

Figure 2 shows the domains of size 8 x 8 that are used in the fractal code of Lenna
(from the first row in Table 1). As expected the indicated domains are located mostly
along edges and in regions of high contrast of the image. These black squares can be
interpreted as a bitmap (of resolution 64 x 64 in this case) and the goal of the procedure
outlined in the introduction is to store this bitmap efficiently. Then the number of
bits required to identify a particular used domain is reduced. If the structure of the
bitmap is strong then these savings are greater than the overhead necessary for coding
the bitmap and an overall reduced file size for the code can be achieved.

We use the "white block skipping” (wbs) quadtree storage scheme described in

5

Figure 2: Domains of size 8 x 8 that are used for a fractal code of 512 x 512 Lenna
are shown in black.

Gonzales and Woods[5, page 354]. For a bitmap of size 2% x 2% we proceed recursively
starting with the block given by the entire bitmap. A solid white block is coded as
0, all other blocks are coded with a prefix 1 and followed by the four codes of their
four subquadrants, which are generated in the same way until a subblock of size 1 is
reached which is coded as 0 (white) or 1 (black). For an example, see Figure 3.

The last two columns in Table 1 report the results of this procedure for the Lenna
test image. For the case without domain pool decimation (o = 1.00) there are no
savings. The costs for storing the wbhs quadtree outweigh the savings from shorter
domain codes. However, as we decrease the value of a below 0.7 we are obtaining
some gain in compression. An especially notable result is obtained for a = 0.30. The
new enhanced storage scheme completely makes up for the loss of compression which
occurred due to the domain pool decimation. Thus, in effect, when comparing with
the original method (no domain pool decimation, no enhanced domain storage, line
1 in Table 1) we arrive at a fractal encoding with exactly the same compression ratio
of 14.88, an improved PSNR (by 0.2 dB) and a computation time reduced from 15.2
seconds down to only 6.0 seconds!

We have carried out the same experiment with domain pools enlarged by factors of
4 and 16. In these cases the break-even point of a = 0.70 is reduced to 0.25 and 0.15
respectively. Thus, the method seems to be applicable in situations where either the
domain pool is not very large or when extremely fast encodings are desired (e.g., by
choosing o < 0.05) and quality can be compromised. In a production implementation
one could carry out the wbs quadtree coding, check whether it yields any savings or
not, and then use the better storage scheme.

Also we note that with strongly decimated domain pools we have that domains

Figure 3: Example for the white block skip coding of a bitmap of size 8 x 8. The

code is

1 [1(0)(11001)(10010) (10101)]

]
1(10011) (0) (10011) (0)]
0]

obtained by recursively processing subblocks counterclockwise each time starting from
the corresponding upper right quadrant. For better readability we have written prefix
codes in bold face, and bracketed the codes for the main- and sub-quadrants.

=)

[
[
[
[

are used more often than once in the fractal code. Thus, standard entropy coding
(Huffman or arithmetic coding) of the domain indices will yield additional savings in
storage. We have not yet implemented this option.

4 CONCLUSION

We have introduced the concept of lean domain pools in which a fraction 1 — « of
low intensity variance domains are discarded from the domain pool. This reduces
the time complexity of the encoding by a factor of roughly a. With this procedure,
implemented in an adaptive quadtree fractal encoder, the tradeoff between increased
speed and quality in terms of fidelity and compression has been investigated. For a
twofold speedup we gain 0.1 to 0.2 dB PSNR and loose up to 3% of the compression
rate. For up to fourfold speedup we typically still gain 0.1 to 0.2 dB PSNR and
loose up to 10% of the compression rate. Also we have introduced a new way for
the specification of the domains used for the fractal code which improves efficiency
when the collection of domains used show a high degree of structure which often is
the case when lean domain pools are used. Our technique is simple and can easily be
incorporated into existing fractal coding programs, even in combination with other
acceleration methods. In summary, the lean domain pools introduced in this work
cause only negligible or no loss with a = 0.5 thereby halfing the encoding time. More-
over, with smaller values of a, the method also has a strong potential in applications
where extremely fast encodings are desired and some quality can be compromised.

Acknowledgements. The author appreciates the invaluable contribution of Matthias
Ruhl, who organized the computer programs and ran the experiments.

7

References

1]
2]

[10]

[11]

[12]

[14]

Barnsley, M., Hurd, L., Fractal Image Compression, AK Peters, Wellesley, 1993.

Barthel, K. U., Schiittemeyer, J., Voyé, T., Noll, P., A new image coding tech-
nique unifying fractal and transform coding, IEEE Int. Conf. on Image Process-
ing, Texas (1994) 112 116.

Bedford, T., Dekking, F. M., Keane, M. S., Fractal image coding techniques and
contraction operators, Nieuw Arch. Wisk. (4) 10,3 (1992) 185-218.

Fisher, Y., Fractal Image Compression — Theory and Application, Springer-
Verlag, New York, 1994.

Gonzales, R. C., Woods, R. E., Digital Image Processing, Addison-Wesley, Read-
ing, 1992.

Jacquin, A. E., Image coding based on a fractal theory of iterated contractive
Markov operators, Part II: Construction of fractal codes for digital images, Tech-
nical Report Math. 91389-17, Georgia Institute of Technology, 1989.

Jacquin, A. E., Image coding based on a fractal theory of iterated contractive
image transformations, IEEE Trans. Image Processing 1 (1992) 18 30.

Kominek, J., Advances in fractal compression in multimedia applications, sub-
mitted for publication.

Kominek, J., Codebook reduction in fractal image compression, Proceedings
[S&T/SPIE 1996 Symposium on Electronic Imaging: Science & Technology —
Still Image Compression II, Vol. 2669, Jan. 1996.

Monro, D. M., A hybrid fractal transform, Proc. ICASSP 5 (1993) 169-172.

Monro, D. M., Dudbridge, F., Fractal approrimation of image blocks, Proc.
ICASSP 3 (1992) 485-488.

Ramamurthi, B., Gersho, A., Classified vector quantization of images, IEEE
Trans. Commun., COM-34, 1986.

Saupe, D., Hamzaoui, R., Complexity reduction methods for fractal image com-
pression, in: I.M.A. Conf. Proc. on Image Processing; Mathematical Methods
and Applications, Sept. 1994, J. M. Blackledge (ed.), to appear with Oxford
University Press, 1995.

Saupe, D., Fractal image compression via nearest neighbor search, in: Conf.
Proc. NATO ASI Fractal Image Encoding and Analysis, Trondheim, July 1995,
Y. Fisher (ed.), to appear in Springer-Verlag, New York, 1996.

8

[15] Signes, J., Geometrical interpretation of fractal image coding, NATO ASI Conf.
Fractal Image Encoding and Analysis, Trondheim, July 1995, to appear in a
special issue of Fractals, 1996.

