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ince the conception of fractal
image compression by Michael
F. Barnsley around 1987, the
research literature on this topic
has experienced a rapid
growth. Following is a brief description
of the major advances in the field and
the largest, comprehensive bibliography
published on this topic to date.

While JPEG is becoming the indus-
try standard for image compression
technology, there is ongoing research in
alternative methods. Currently there are
at least two exciting new developments:
wavelet based methods and fractal
image compression. This article is
intended to provide the reader with an
overview and a resource of the research
on the latter. We attempt to put the
work into historical perspective and to
provide the most comprehensive and
up-to-date list of references in the field,
truly a considerable number as shown
in the following table.

Year Publications Year Publications
1987 1 1991 17
1988 7 1992 23
1989 7 1993 31
1990 9 (1994) (34)

The organization of this article is as
follows. In the next section we present a
brief mathematical framework of fractal
image compression. The third section
provides an overview of the major
advances in the research of fractal image
compression starting from the visionary
conception of Barnsley in 1987 and the
ground-breaking work of Jacquin in his
1989 Ph.D. thesis. The fourth section
contains two tables giving a quick sur-
vey of the material included in the refer-
ences. Finally we conclude with the bib-
liography which could be regarded as
the main contribution of this article.
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Since we explain the mathematical
fundamentals involved in a fractal
image compression scheme only at
some coarse level of detail, the reader
will profit the most from this paper
when already familiar with the basic
concepts. If necessary, such knowledge
can be attained by reading introductory
texts or reviews, for example, [BaHu92,
Fish92a, Fish94a, Jacq93].

We believe that here we are present-
ing a fairly full picture of the literature.
Of course, in spite of our efforts, some
pieces containing relevant work may
have skipped our attention and, thus,
may have been unduly and unintention-
ally ignored here.

The mathematical principle
behind fractal image
compression

As a model for the space of mono-
chrome images we choose a space £ of
bounded continuous functions f: X —» G
for the simplicity of its mathematical
description. The set X taken for exam-
ple as the unit square represents the set
of the spatial coordinates of the image
while the set G taken as the interval
[0.1] represents the set of intensity val-
ues of the image. However, for practi-
cal applications suitable for computer
processing one can prefer a discrete
framework in which a spatially digi-
tized image is modeled as a point of a
finite dimensional space. Thus, a dis-
crete grey-tone image of size n X m pix-
els is thought of as a point in R "*™,

After a distance d is constructed such
that (E,d) is a complete metric space,
the fractal (or attractor) coding of the
image f is seen as the optimization
problem:

Find a contractive operator T on
(E.d) whose fixed point g=Tg is the
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best possible approximation of f (the
contraction mapping principle
ensures that a fixed point g=Tg exists
and is unique).

This optimization problem will be
approached by means of the collage
theorem [Barn88b]:

Collage theorem

Let T be a contraction on the com-
plete (E,d) metric space with contrac-
tivity factor s and fixed point g.
Letf € E. Then

d(f.) S d(£.T7).

Thus, by minimizing the distance
between f and Tf (the collage of the
image), we hope to minimize the dis-
tance between the fixed point g and the
given image f. Of course, if the value of
s is close to 1, nothing ensures that this
method provides a good approximation.
Yet this was the original idea of
Barnsley and most of the fractal based
algorithms rely on the same approach.
The fractal compression scheme can be
viewed as two consecutive steps.

The encoding process (see figure 1)
It consists of the construction of the
operator T which will be defined by a
set. The sets R, called ranges, form a
partitioning of X. The sets D called
domains, are also subsets of X but may
overlap. For each R, a D, a bijection
U Dg >Ry and a contraction V,: G — G
(this map adjusts the intensity values in
the domain to those in the range) are
chosen such that the distance
d(f kaf,w ) is as small as pos-
sible. This is simply realizing the con-
dition f=Tf locally by exploiting the
redundancy contained in the image
since we seek for each part of the image
corresponding to a range a similar (under
appropriate contractive transforma-
tions) part corresponding to a domain.
Finally, the operator T is given by

where Tf = 2 T f
Py and

()= 31, Cou ().
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Figure 1. Elements of the fractal code. Left: Partitioning of the image region
(a square) into ranges. Center: some of the corresponding domains. Right: the
affine transformation V, for the k-th domain-range pair. For each domain-
range pair D R, there is an (invertible) geometric transformation
u,- D, — R,. The function f evaluates image intensities. For a point x € R, we
compute its preimage u,-/(x) in the corresponding domain D, look up the
image intensity, f(u, “!(x))and finally apply the affine transformation, V,,

obtaining Tf(x) = v, fu,”/(x) for x e R, .

The decoding process (see figure 2)

The decoding process consists of the
computation of the fixed point. This is
accomplished by iterating the operator
T upon any initial image f,. Since the
operator 7 is contractive, the contrac-
tion mapping principle ensures the con-
vergence of the sequence {7,(f,)/ to the
fixed point.

Overview of fractal image
compression research

Fractal image compression is based
on the concepts and mathematical
results of iterated function systems
(IFS). The roots of this theory are at
least 10-20 years old (see the work of
Williams? and Hutchinson?). Then, in
the mid 1980°s, IFS’s became very pop-
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Figure 2. Encoding and decoding for a one-dimensional example. Let
f:10,1] — [0,1] denote the ‘image’ to be encoded (left). We choose the same
domain [1/2,1] for all ranges shown on the left. Note that the graph of fin R, as
well as in R, is just a scaled down copy of the graph in the domain. In R,we can
reproduce f by a vertical flip of the same copy, in R, we use the copy with an
additional offset of 1/2 . The code thus employs the geometric transformations
w (x) = x/2 + (k-2)/4 and the affine transformations v ,(f) = vi(f) = 172,
vy(f) = (1-f)/2, and v(f) = (1+f)/2. When reconstructing the original from the
code we may start with an arbitrary ‘image’, g, and repeatedly apply the image
operator 7. The first two iterations T, and T2 are shown for the choice g(x) = x.

This setup is called a local zterated funcnon system or a partitioned iterated
function system (PIFS).
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ular. It was Barnsley and his coworkers
at Georgia Institute of Technology who
first noticed the potential of IFS for
applications in computer graphics.
Initially, around 1985, their research
focused on modeling natural shapes
such as leaves and clouds* but then
Barnsley and Sloan advertised in popu-
lar science magazines the incredible
power of IFS for compressing color
images at rates of over 10,000 to 1.
[BaS187, BaSI88, SciAm&8]. They
included a few decoded images sup-
porting this claim.

The algorithms that were used to
generate these a@tonishing results con-
sisted of two phases.” First, an image
had to be segmented into parts, that
were as self-similar as possible. Then
each part was coded as an IFS with
probabilities. The key for this was the
collage theorem providing a criterion
for the choice of the transformations
in the IFS code thereby optimizing the
overall result. For the decoding, the
“chaos game” then produced a large
number of points, the histogram of
which serving as the approximation of
the corresponding part of the image.
Finally, the decoded parts had to be
reassembled to produce the complete
decoded IFS representation. While the
decoding could proceed automatically,
the encoding required human interac-
tion, at least in the segmentation of the
image.

Barnsley and Sloan continued their
work from within their newly formed
company, Iterated Systems, Inc.,
devoted to applications of iterated
function systems, especially fractal
image compression. They were granted
two patents [BaS190, BaSI91] and
since then the company has offered
commercial image compression soft-
ware and hardware. After Fractals
Everywhere |Barn88b], Barnsley and
Hurd [BaHu92] came out with a sec-
ond book, which is dedicated to fractal
image compression.

Several researchers have taken up
the challenge to design an automated
algorithm to solve the inverse (i.e., the
encoding) problem using the basic IFS
method and its generalizations (recur-
rent iterated function systems, RIFS).
Vrscay and Forte have studied the so-
called moment method [Vrsc9la,
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Vrsc91lb, FoVr94a, FoVry4bj.
Bedford. Dekking and Keane

[BeDeKe92] have tried the simulating
annealing method. studied the general
[FS approach theoretically and reached
the conclusion that there are consider-
able mathematical obstacles in approxi-
mating images in this way.

In 1989 Jacquin proposed the first
fully automated algorithm for fractal
image compression. It was based on
affine transformations acting locally
rather than globally. This new
approach first appeared in his Ph.D.
thesis [Jacq89] and since then several
papers [Jacq90a.Jacq90b,Jacq92] have
popularized his scheme. A digital
monochrome image is partitioned into
nonoverlapping square pixel blocks
(range blocks). Larger square pixel
blocks (domain blocks) which may
overlap are sorted into a set of cate-
gories (shade blocks, edge blocks and
midrange blocks) following a classifi-
cation. well-known in image process-
ing. For each range block, a domain
block of the same category is searched
(for evident complexity reduction pur-
poses) such that its image under a local
strictly contractive affine mapping
minimizes its distance to the original
block in the root mean squares metric.
Each affine mapping is composed of a
geometric part which shrinks the
domain block down to the size of a
range block by pixel averaging, and a
massic part that transforms the
obtained block by shuffling (8 alterna-
tives corresponding to the isometry
group of the square), scaling with
quantized parameters and addition of a
constant grey tone block.

These operations were called con-
trast scaling and luminance shift
respectively. The union of the affine
mappings, the Jacquin block operator,
is shown to be contractive on the set of
discrete images. The iteration of the
block operator upon any initial image
generates an approximation of the tar-
get image. This scheme is by many
aspects related to vector quantization
with which it shares the idea of using a
codebook providing a library for the
selection of the domain blocks.
However, the codebook in fractal com-
pression is only a “virtual” one since
the domain blocks are not stored but
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taken from the image itself, thus
exploiting the redundancy of the infor-
mation present in the image.

In a way. the thesis of Jacquin and
his follow-up papers broke the ice for
fractal image compression. providing a
starting point for further research and
extensions in many possible directions.
Some of the main subjects addressed
so far are:
 the partitioning of the image into

ranges: adaptive quadtrees, rectangu-

lar and triangular ranges

+ the encoding: choice of the domain
pool, including several fixed basis
blocks and even several image

domain blocks for the code of a

range and/or choice of the transfor-

mations defining the operator

* classification methods for the com-
plexity reduction of the encoding
step: based on image values and
intensity variance, clustering of
domains, fast algorithms from com-
putational geometry to solve nearest
neighbor problems

« the decoding: standard iteration ver-
sus fast hierarchical or direct numeri-
cal

* coding of 1D or 3D data: time series,
volume data, video frames

These aspects were studied in order
to obtain the best compromise in the
three key issues of every image com-
pression scheme, namely:

* image fidelity

* compression ratio

* time complexity of the
encoder/decoder

Most papers consider several of
these aspects. Thus, rather than pre-
senting the main ideas and advances in
these topics one by one we proceed by
discussing the results of the different
research groups roughly (but not pre-
cisely) in chronological order.

In [FiJaB092], Fisher, Jacobs and
Boss introduced adaptive methods in
the encoding. They used quadtree, rec-
tangular and triangular partitions of the
range blocks to improve the image
fidelity. They also pointed out the
important fact that it is not necessary to
impose strict contractivity conditions
on the transformations of the code
since the eventual contractivity® of
their union is a sufficient condition to
ensure the convergence of the iteration
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process in the decoding. Their classifi-
cation scheme [Fish94a] is made with
a clever design of a variable number of
classes (4-12-72) taking into account
not only intensity values but also inten-
sity variance across a domain.

In [JaFiBo92], they study the depen-
dence of the performance of the encod-
ing scheme on the quantization of the
scale factor for the contrast scaling and
the offset for the luminance shift, the
number of domains used, the number
of domain classes searched, the toler-
ance level employed to stop the adap-
tive algorithm, the maximum allowed
value for the contractivity factors of
the maps and the minimum range size
in the quadtree subdivision. The effects
of postprocessing the image by mini-
mizing the discontinuities at the block
boundaries are also considered.

Independently from Fisher et al,
Bedford, Dekking and Keane
[BeDeKe92] implemented a similar
scheme based on quadtree partitions.
Like Fisher et al, they also noted that
the search for the factors providing the
scale factor and offset can be computed
directly by solving a least squares prob-
lem (this approach appeared earlier in
[OiLeRa91]). Finally, they introduced
Rademacher functions to propose a cri-
terion for the elimination of bad
domains.

The work of Lundheim [Lund92,
Lund94] presents a systematic analysis
of the fractal encoding and decoding
problem based on a discrete setting,
i.e., emphasizing the finite-dimen-
sional and discrete nature of digital
signals. Besides a discussion of opti-
mal collages in the usual least squares
sense using affine operators, other
norms are discussed (e.g., in the con-
text of this work the Hutchinson metric
is shown to be a weighted /; norm).
Several new results are obtained in this
approach. For example, eventual con-
tractivity may be tested based on an
efficient way of computing contraction
factors which also lead to improved
versions of the collage theorem.
Furthermore, an interesting nonitera-
tive decoding method is presented
which reportedly runs faster than the
usual iterative one.

Using the mathematical framework
described by Lundheim [Lund92] in

Computer Graphics



which blocks of a discrete grey-tone
image are seen as points of a finite
dimensional inner product space,
Lepsgy and @ien [Leps93, Oien93.
LeOi94, OiLe94] generalized Jacquin's
algorithm by letting the translation
term be spanned by several basis vec-
tor blocks (see also [OilLeRa91] and
[GhHu93]). By making all the deci-
mated domain blocks orthogonal to the
translation subspace basis vectors
which were previously orthogonalized
by a Gram-Schmidt procedure, it was
shown that the /, optimization of the
collage was computationally less
expensive than an optimization without
orthogonalization.

But a more fundamental fact is
obtained. The optimization can be
done without constraining the size of
the scaling coefficients as it is the case
in [Jacq92, BeDeKe92. FiJaB092]!
The orthogonalization operator will
always make the decoding algorithm
converge exactly in a finite number of
iterations. An adaptive technique for
block classification is done by a clus-
tering of the codebook (the set of
shrunk, shuffled domain blocks). The
codebook is subdivided into subsets by
computing centers and grouping the
codebook blocks around the centers. In
the encoding, a range block is com-
pared first to the centers and then to
the blocks in the corresponding cluster.
The criterion for comparing blocks
relies on a similarity measure which is
large when the blocks are parallel.

Fractal compression based on piece-
wise self-similarities has first been
implemented by Jacquin for images,
i.e., for digital signals in two dimen-
sions. Of course, the same ideas are
applicable for modeling one-dimen-
sional signals. The group at the
Department of Electrical Engineering
at the Georgia Institute of Technology
consisting of Hayes, Mazel and Vines
has investigated this application in a
number of papers. For example, in
[MaHa92] the approach using linear
fractal interpolation as well as the
piecewise self-affine fractal model are
discussed with algorithms that are
adaptive in the choice of the sizes of
the ranges and domains. Some previ-
ous work on 1D-coding is in {MaSI189,
With89].
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An interesting new variant of fractal
image coding, developed by Vines in
[Vine94]. is given by an orthonormal
basis approach which is a hybrid
method combining principles of trans-
form coding with those of fractal
decoding. An image range is covered
by a linear combination of fixed basis
blocks and image basis domain blocks.
The fixed basis blocks are determined
a priori.

For example, one can use three
blocks giving all bivariate polynomials
of degree one. or six blocks producing
all such polynomials of degree two.
(Such fixed basis blocks had already
been introduced in [OilLeRa91].) If the
scheme is designed for range blocks
of, say, 8 by 8 pixels, then another set
of blocks taken from the original
image (down-filtered to size 8 by §)
are chosen to make up a total of 64
linearly independent blocks. Each
range block is then approximated by a
linear combination of only a few of
the fixed basis blocks and the image
basis blocks.

To make this approach efficient, care
must be taken that the set of chosen
image blocks fits well to the set of all
range blocks. Also domain blocks must
be orthogonalized (or required to be
almost orthogonal) to facilitate easy
computation of the coefficients. See
the references [GhHu93]. The decod-
ing must use the iteration procedure
common to fractal image compression
where in each iteration the evaluation
of the linear combination must be com-
puted for each range.

An original approach to fractal cod-
ing is described in [MoDu92a,
MoDu92b]. The image is partitioned
into nonoverlapping rectangular
blocks. Each block is split into a finite
number of tiles using an IFS. Then,
each tile is coded by a least-squares
approximation of the transformed
block (under a contractive affine map-
ping). Thus, the encoding is accom-
plished without searching by solving a
set of linear equations whose coeffi-
cients are computed in linear time with
the total number of pixels (see also
[LiNoF093] for a comparable tech-
nique in 3 dimensions). This method,
called the Bath fractal transform, is
generalized in [Monr93a, Monr93b,
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Monr93c] by including searching at
different levels for which the
cost/image fidelity trade-off is experi-
mentally investigated. The results indi-
cate that the fidelity gained by search-
ing does not compensate the extra bits
needed to specify the symmetries. It is
suggested that the use of higher order
contractive maps (instead of the affine
ones) could be a better option
(MoWo94]|. In {Dudb94|, Dudbridge
presented a similar coding technique
with a fast non-iterative decoding
algorithm. Some promising results on
fractal video compression are reported
in [MoNi94, WiNiMo094].

In [BaMaKa93, BaMaKa94],
Baharav, Malah, and Karnin proposed
a fast decoding algorithm based on a
hierarchical interpretation of the IFS-
code. Essentially the methods pre-
scribe the usual iteration for the
decoding. However, one modification
is that the dimension of the underlying
space (i.e., the size of the image that is
being iterated) grows from one itera-
tion to the next. Thus, initially, when
the dimension is small, an iteration is
very fast, while the full size image is
used only in the last iteration. Of
course, an interpolation procedure
must be carried out between iterations
in order to increase the dimension.
Although the mathematics of this are
described only for a special case, it is
clear that the method can be success-
fully applied in practice when the
strict conditions, which are only con-
venient in the derivation of the mathe-
matical proof are not fulfilled.

In [OBLMK94], with the collabora-
tion of @ien and Lepsgy, they present
a new collage theorem holding for a
certain class of affine mappings called
Affine Blockwise Averaging maps
which operate on the space of discrete
signals and are suitable for the orthog-
onalized version of Jacquin’s operator
introduced in the theses of @ien and
Lepsgy [Oien93, Leps93]. The theo-
rem provides a better bound on the
distance between the original image
and the attractor by considering in the
estimate norms of collage errors at
successively coarser resolutions. The
improvement tested on real world
images is reported to be vast.
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A rapid overview of
the references

To provide a rapid overview of the
papers contained in the bibliography, we
propose two tables. The first is devoted
to works using the basic IFS method.
The second table deals with papers that
consider local iterated function systems.
The bullet symbol indicates a topic that
was stressed in the paper.

One dimension

Two dimensions

... Three dimensions (video)
.... Partitioning of the image
.... Decoding

.... Fixed basis blocks

... Encoding

Moment method

Fractal interpolation

... Genetic algorithms

... Simulated annealing
Recurrent iterated function
systems

Conclusion

Although fractal image coding is a
relatively new technique, it has
acquired a performance comparable
with other methods such as JPEG or
vector quantization. Furthermore, the
field of research is far from being
exhausted since there are many direc-
tions that have not yet been fully inves-
tigated (e.g., the use of non-affine
transformations, the combination of
fractal coding with other techniques
and extensions to volume data and
video frames). The main advantages of
the fractal compression scheme are its
ability to provide high compression
ratios for a large class of images, the
speed of its decoding process and its
multi-resolution properties. However,
to arrive at an optimal algorithm which
can outperform traditional techniques,
more attention needs to be devoted to
the encoding process which still suffers
from long computation times.
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