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ABSTRACT

In conventional fractal image compression the de-
coding amounts to iterating an affine map on an
arbitrary initial image until convergence. It has
been observed that the convergence of the decod-
ing can be accelerated by updating each pixel as
soon as its new value is available. However, no
analysis was provided on the dependence of this
algorithm on the order in which the pixels are de-
coded. In this paper a technique is proposed where
the ordering is based on the frequency with which
a pixel was used in the fractal code. Simulations
on several images show that this approach enables
a faster convergence than the natural method where
the pixels are decoded according to the order in
which the ranges were encoded.

1. INTRODUCTION

One of the most interesting aspects of fractal im-
age compression is the simplicity of the decoding.
A contractive transformation 7' leaving the orig-
inal image x* € RN almost invariant is applied
iteratively on any initial image x(°) until conver-
gence of the sequence of iterates

x(F+) = 7 (x(#) (1)

to x7, the fixed point of T', which is an approx-
imation of the original image [1]. When T is an
affine mapping, i.e., T(x) = Ax + b, where A =
(ay,) is an N x N matrix and b € RY, it has
been observed independently by many researchers
[2, 3, 4, 5] that the convergence of the sequence
of iterates can be made faster if at each stage

the newly computed components m,ﬁkﬂ)

whenever available instead of azq(,k). More precisely,
if we write the conventional iterative method (1)

in the equivalent form

are used

N
mg’”l) = Z au,vmgk) + by, (2)

v=1

then by decoding in the order u = 1,2,..., N the
new method corresponds to the iterative method

u—1 N
o) = 3 00 + 3 0z + b,
v=1 v=u

A discussion of the convergence of the new method
and a rationale behind its faster convergence are
provided in [6, 5].

Whereas with the conventional method (2) the
order in which the components mgfﬂ) are com-
puted has no effect on the resulting image x(*+1),
it is clear that this is not the case when these
components are progressively updated. For ex-
ample, if the computations are done in the order
u=N,N—1,...,1, then we have

u N
S =Y el + Y a4 b
v=1 v=u+1

Even though distinct orderings produce different
sequences of iterates, it is not difficult to see that
all of them converge to the same image x7.

2. THE ORDERING TECHNIQUE

Let us first introduce some notations. A sampled
image is a function f : X = {0,..., N, — 1} x
{0,...,N, — 1} — R. The elements of X are
called pizels. Let B be a nonempty subset of X
called image support. The number of pixels in B
is called the size of B. Let 9 be a one-to-one map-
ping from X to {1,...,N} where N = N, x N,.
To each image support B of size n we associate an
n—dimensional vector

xg = (f~ ' (br),-.., fo 1 (Bn))T,

where ¢(B) = {b1,...,bp,} C{1,...,N} and b; <
by < --- < by

In the encoding the image support X is par-
titioned into ng disjoint image supports R;, i =
1,...,ng, of size n; called ranges. Each range vec-
tor X, is approximated by the linear combination

XR, = 8iSiPxp, + 0ily;.

where



o1, =(1,....,)T e R™.
o Yp(Ri) ={(ri)ys---(ri)p, }-

e D; is a subset of X of size m;n; called do-
main with ¢¥(D;) = {(di)1,---, (di)min: }-

e s; and o; are scalar coeflicients called scaling
factor and offset, respectively.

e P; is a permutation matrix of order m;n;.

e S; is an n; x m;n; downsampling matrix de-

fined by
10 0
Si:mii 0 1 ° )
00 1
where 1 = (1...1) and 0 = (0...0) are 1 x m;

submatrices. Each approximation of a range vec-
tor xg, defines a mapping

T;:RY - RN
where

Ti(x) = 5;G;S; PiFix + 0,G;1n.

Here the m;n; x N matrix F; = (f} ) is defined
by
k= 1,...,mm,~;

wv ] 0, otherwise,

i { ]-7 if (’LL,U) = (ka (dz)k)a

and the N x n; matrix G; = (g}, ) is defined by

2 ]-a if (U,’U) = ((Tz')kak);
Juyo 0, otherwise.
The affine operator T is given by

nR
S
i=1

= Ax+b,

where A = 3" 5,G;S;P;F; is areal N x N ma-
trix and b = Y"1, 0;G;1y is a real column vector
of dimension N.

The operator T is completely defined by spec-
ifying the range partitioning, and for each range
the following four parameters: the matching do-
main, the permutation matrix, the scaling factor
and the offset. The list of these parameters is
called a fractal code.

In our initial implementation of the new decod-
ing technique [4, 5] we used the natural ordering
in the decoding, that is, we started by decoding
and progressively updating the pixels in R;, then
in R» until reaching those in R,,,,. We propose in
this paper to decode and update in the order of
the range frequencies in the fractal code. The no-
tion of image support frequency is defined below
and illustrated in Figure 1.

k:l,...,ni;

T =
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Figure 1: Image partitioning in 16 ranges

and frequency of range occurence in the frac-

tal code. With the proposed technique the

ranges are decoded in the following order:

Rio0, Ri1, Ri4, Ri5, R3, Ra, R7, Rs, R1, R2, Rs, Re.
The remaining ranges are decoded only at the last

iteration.

Definition 1 Let D4,..., Dy, be the domains se-
lected in the fractal code. The frequency of an im-
age support B is

52 card(BODy)
card(B) ’

where card(B) is the number of pizels in B.

Another approach would be to compute the fre-
quency of each pixel and to decode pixelwise. In
this case some extra memory will be used by the
decoder. Note that the additional preprocessing
step needed for the sorting of the ranges (or the
pixels) according to their frequency is negligible.

The expected gain is twofold. First, this strat-
egy will increase the number of pixels that will
be used in their updated form yielding, hopefully,
a faster convergence. Second, as a consequence
of the sorting of the frequencies, the decoder can
identify those ranges (or pixels) that are not present
in the fractal code. These parts, as pointed out in
[7, 8] in a different context, need only be decoded
at the last iteration. The following proposition
gives the reason why this is possible.

Proposition 1 Let A = (ay,,) be the N x N
matriz and b = (b,) the vector of dimension N
associated to the affine mapping T providing the
code of an image f. Suppose that the spectral ra-
dius p(A) < 1. Let xr denote the fized point
of T. Now suppose that A has zero entries at
the p columns ji,...,Jp. Let {i1,...,in_p} =
{1,...,N}\ {j1,---,Jdp}- Call A’ the (N —p) x
(N —p) matriz obtained from A by discarding both



columns and rows ji,...,J,. Call T' the operator
defined by T'(x) = A'x + b, where bl, = b;,, u =
. N —p. Then we have the following:

1. p(A) = p(A").

2. Let xp = (x4, ... T denote the fized

S TN —p)

point of T' . Then xr = (21,...,2Nn)7 is
given by
x;, =, foru=1,...,N—p

and fork=1,...,p

Tjp = E

ve{l,..,N—p}

!
Ajy iy Ty T bjk: .

Proof. 1. Without loss of generality we can as-

sume that the p first columns are null. Thus, A
can be written in the form
0 ... 0 aips1 ai,N
Ao 0 ... 0 a2’]-)+]_ az.,N 7
0 ... 0 aN,.erl an,N

which has the block matrix form

(01 A
=(0 %)

where O; and O; are zero matrices of size p X p
and (N —p) X p, respectively. Thus, det(AI—A) =
AP det(AI — A"), which shows that A and A’ have
the same spectral radius. 2. One simply veri-
fies that the vector x7 is solution of the equation
AxT + b= x7. O

By noting that pixels with zero frequency cor-
respond to zero columns in the matrix A, the propo-
sition implies that if the decoding procedure is
convergent, then one can compute its fixed point
by decoding first the pixels with nonzero frequency
until convergence and then use the result to com-
pute the value of the pixels with zero frequency
in the final step. Finally observe that the result
of the proposition applies also to our decoding
method since a pixel with zero frequency in the
fractal code corresponds also to a zero column in
the iteration matrix of the new method.

3. EXPERIMENTAL RESULTS

We compare in this section the convergence of the
decoding for the following three schemes.

e Scheme 1: The conventional decoding with-
out pixel updating.

e Scheme 2: The new decoding technique where
the ordering is as in the encoding.

e Scheme 3: The new decoding technique with
a frequency based ordering.

First, a uniform partitioning in 8 x 8 range blocks
is used. The domain pool consists of blocks of size
16 x 16 whose upper-left corners are positioned
on a lattice with a vertical and horizontal spac-
ing of d = 8 pixels. Thus, each domain block
is a union of four range blocks. Table 1 shows
the results for the 512 x 512 Lenna image. Here
Scheme 3 is based on the range frequencies in the
fractal code. Figure 2 provides statistics on the

frequency of each range in the fractal code. Table
Iteration | Scheme 1 | Scheme 2 | Scheme 3
1 73.1453 59.6675 46.8337
2 42.2518 25.1607 17.1060
3 24.6055 9.5244 4.7620
4 14.0406 2.3372 0.9230
5 4.5585 0.3805 0.1472
6 1.3235 0.0740 0.0287
7 0.3726 0.0168 0.0070
8 0.1080 0.0037 0.0020

Table 1: Convergence of the decoding for the three
methods for the 512 x 512 Lenna image. The val-
ues given in the table are the root mean square
errors between the fixed point and successive iter-
ates of an initial black image x(® = (0,...,0)7.
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Figure 2: Range frequency in the fractal code.

2 presents results for the 512 x 512 Baboon image
with Scheme 3 now based on pixel frequencies (see
Figure 3). Here the domain pool spacing d is equal
to two pixels. Thus, domains are not unions of
ranges. To give an accurate estimation of the con-
vergence speed all computations in the previous
simulations are done in double precision. How-
ever, in some implementations the values taken
by the pixels at each iteration are rounded to in-
tegers to save memory space. This does not hinder
the success of our methods which show the same
improvements when rounding is used. Figure 4



Iteration | Scheme 1 | Scheme 2 | Scheme 3
1 96.1099 80.8097 64.4852
2 66.8111 38.9070 25.150
3 39.8743 13.3733 6.8247
4 19.7826 3.4775 1.4501
5 7.8572 0.7364 0.2827
6 3.0382 0.1668 0.0574
7 1.1755 0.0360 0.0120
8 0.4671 0.0074 0.0026

Table 2: Convergence of the decoding for the three
methods for the 512 x 512 Baboon image. Scheme
3 is based on the pixel frequencies in the fractal
code.
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Figure 3: Pixel frequency in the fractal code. Due
to the limitations of the plotting device pixels with
zero frequencies do not appear on the graph.

shows the second iterate produced by the three
decoding schemes for the quadtree encoded 512 x
512 Bridge image when rounding is used at each
iteration.

Even though the decodings with the frequency
based orderings do not converge much faster than
Scheme 2, they still may be preferred since at each
step the iterates provide a better approximation.
Similar results were obtained for all other tested
images and domain pools.

4. CONCLUSION

We have shown that the decoding in fractal im-
age compression can be improved by combining a
pixel update scheme with an ordering technique
based on the frequency of the ranges (or the pix-
els) in the fractal code. Besides the computational
gains inherent to the noniterative decoding of zero
frequency ranges (or pixels), experimental results
indicate that the new method allows better ap-
proximations at each iteration step and a faster
convergence.
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Figure 4: The fixed point image (upper left, PSNR = 29.85 dB), and the second iterate image with the
conventional decoding (upper right, PSNR = 13.57 dB), the new method with the natural ordering (lower
left, PSNR = 19.74 dB), and the new method with the ordering based on pixel frequencies (lower right,
PSNR = 21.83 dB).



