Back to Publications

Author(s) Wiedemann, O, Hosu, V., Lin, H., Saupe, D.
Title Disregarding the big picture: Towards local image quality assessment
Abstract Image quality has been studied almost exclusively as a global image property. It is common practice for IQA databases and metrics to quantify this abstract concept with a single number per image. We propose an approach to blind IQA based on a convolutional neural network (patchnet) that was trained on a novel set of 32,000 individually annotated patches of 64x64 px. We use this model to generate spatially small local quality maps of images taken from KonIQ-10k, a large and diverse in-the-wild database of authentically distorted images. We show that our local quality indicator correlates well with global MOS, going beyond the predictive ability of quality related attributes such as sharpness. Averaging of patchnet predictions already outperforms classical approaches to global MOS prediction that were trained to include global image features. We additionally experiment with a generic second-stage aggregation CNN to estimate mean opinion scores. Our latter model performs comparable to the state of the art with a PLCC of 0.81 on KonIQ-10k.
Download WiHoLi18.pdf