Back to Publications

Author(s) Su, S., Hosu, V., Lin, H., Zhang, Y, Saupe, D.
Title KonIQ++: Boosting no-reference image quality assessment in the wild by jointly predicting image quality and defects
Abstract Although image quality assessment (IQA) in-the-wild has been researched in computer vision, it is still challenging to precisely estimate perceptual image quality in the presence of real-world complex and composite distortions. In order to improve machine learning solutions for IQA, we consider side information denoting the presence of distortions besides the basic quality ratings in IQA datasets. Specifically, we extend one of the largest in-the-wild IQA databases, KonIQ-10k, to KonIQ++, by collecting distortion annotations for each image, aiming to improve quality prediction together with distortion identification. We further explore the interactions between image quality and distortion by proposing a novel IQA model, which jointly predicts image quality and distortion by recurrently refining task-specific features in a multi-stage fusion framework. Our dataset KonIQ++, along with the model, boosts IQA performance and generalization ability, demonstrating its potential for solving the challenging authentic IQA task. The proposed model can also accurately predict distinct image defects, suggesting its application in image processing tasks such as image colorization and deblurring