Abstract

Back to Publications

Author(s) Men, H., Lin, H., Saupe, D.
Title Empirical evaluation of no-reference VQA methods on a natural video quality database
Abstract No-Reference (NR) Video Quality Assessment (VQA) is a challenging task since it predicts the visual quality of a video sequence without comparison to some original reference video. Several NR-VQA methods have been proposed. However, all of them were designed and tested on databases with artificially distorted videos. Therefore, it remained an open question how well these NR-VQA methods perform for natural videos. We evaluated two popular VQA methods on our newly built natural VQA database KoNViD-1k. In addition, we found that merely combining five simple VQA-related features, i.e., contrast, colorfulness, blurriness, spatial information, and temporal information, already gave a performance about as well as those of the established NR-VQA methods. However, for all methods we found that they are unsatisfying when assessing natural videos (correlation coefficients below 0.6). These findings show that NR-VQA is not yet matured and in need of further substantial improvement.
Download MeLiSa17.pdf